

BIPOLAR HALL EFFECT LATCH

General Description

GH141F series high temperature bipolar Hall effect integrated sensor is a magnetic sensing circuit composed of internal voltage stabilizing unit, Hall voltage generator, differential amplifier, temperature compensation unit, Schmitt trigger and open collector output stage. Its input is magnetic induction strength and its output is a digital voltage signal.

It is a magnetic sensing circuit with two magnetic poles, which is suitable for working under rectangular or cylindrical magnets. GH141F series can operate at - 40 $^{\circ}$ C ~150 $^{\circ}$ C. The operating range of power supply voltage is 3.8V~30V, and the maximum load current capacity is 40mA. The package is SIP3L(TO92S).

Features

- Wide power supply voltage range and large output current
- Fast switching speed, no instantaneous jitter
- Operating frequency width (0~100KHz)
- Long service life, small size and convenient installation
- Can interface with logic circuit directly

Applications

- DC brushless motor
- Autombile igniter
- Contactless switch
- Current sensor
- Safety alarm device
- Isolation detection
- Position control

Ordering Information

Product	Temp.Range	Package	Voltage	Packing
GH141FLUA	L(Note1)	UA(Note2)	3.8V-30V	1000PCS/BAG

Note:

1. L represents the operating temperature range of-40°C~150°C;

2. UA represents that the packaging form is SIP-3L (TO-92S).

GH141F

BIPOLAR HALL EFFECT LATCH

• Pin Configuration

Pin Number	Pin Name	Function			
1	VCC	IC Power Supply Voltage			
2	GND	IC Groud			
3	OUT	Open Collector Output, a pull-up resistor is needed			

Figure 1. Pin Configuration of GH141F

Functinal Block Diagram

Figure 2.Functional Block Diagram of GH141F

BIPOLAR HALL EFFECT LATCH

• Absolute Maximum Ratings(Note3)

Parameter	Symbol	Value	Unit
Supply Voltage	VCC	-30~+40	V
Magnetic Flux	В	unlimited	Gauss
Reverse Output Voltage	VCE	-40	V
Output Current	IOL	40	mA
Power Dissipation	PD	450	mW
Operating Temperature	ТО	-40~+150	°C
Junction Temperature	TJ	+150	°C
Storage Temperature Range	TS	-65~+170	°C

• Electrical Characteristics (VCC=12V, TA=25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	VCC	Operating	3.8	-	30	V
	Vsat	IOUT=25mA,B>BOP	100	-	250	mV
Output Saturation Voltage		IOUT=45mA,B>BOP	250	-	600	mV
Output Leakage Current	IOL	VOUT=30V B <brp< td=""><td>-</td><td>0.1</td><td>10</td><td>uA</td></brp<>	-	0.1	10	uA
Supply Current	ICC	OPEN	-	3.5	9.0	mA
Rise Time	tr	$R_{L=820\Omega} C_{L=20PF}$	-	0.2	-	uS
Fall Time	tf	RL=8200 CL=20PF	-	0.5	-	uS

Note 3: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

• Magnetic Characteristics (VCC=12V, TA=25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit
Operating Point	BOP	-	-	120	Gauss
Releasing Point	BRP	-120	-	-	Gauss
Hysteresis	BHYS	40	80	-	Gauss

BIPOLAR HALL EFFECT LATCH

Output Characteristics

Figure 3.Output characteristics of GH141F

Typical Application

Note:

CIN is used to stabilize external power supply; RL is the pull-up resistance necessary for open collector output, with a value range of 820 Ω ~100K Ω , depending on the current capacity required by the back-end input; CL is used to filter out the output noise. This capacitor will affect the rise time of the waveform.

Figure 4. Typical application of GH141F

GH141F

BIPOLAR HALL EFFECT LATCH

Marking Information 41F 41F:GH141F Y:Last digit of production year,0~9,"5"=2015 YWW WW:Production week,01~52 2] 3 **Package Information** ► 2.00mm 0.51mm 1.3mm ŧ 3X 0.41 5.05 MAX Θ 3X (0.8) 2X 1.27±0.05 3X 0.48 0.43 1 7 2.64 2.28 4.0 Ŧ 3X 0.48 0.35 3X 290 3.2 2X (45°

0.84